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ON STIELTJES POLYNOMIALS 
AND GAUSS-KRONROD QUADRATURE 

FRANZ PEHERSTORFER 

ABSTRACT. Let D be a real function such that D(z) is analytic and D(z) #& 0 

for Izi I 1 . Furthermore, put W(x) = l - x2ID(e"I')12, x = cosIP, 
p E [0, 7r], and denote by p,(, W) the polynomial which is orthogonal on 
[-1, +1] to Pn-1 (Pn-1 denotes the set of polynomials of degree at most 
n - 1) with respect to W . In this paper it is shown that for each sufficiently 
large n the polynomial En+, (., W) (called the Stieltjes polynomial) of degree 
n + 1 which is orthogonal on [-1, + 1] to PIn with respect to the sign-changing 
function Pn (., W) W has n + 1 simple zeros in (-1 , 1) and that the inter- 
polation quadrature formula (called the Gauss-Kronrod quadrature formula) 
based on nodes which are the 2n + 1 zeros of En+,(, W)pn(., W) has all 
weights positive. 

1. INTRODUCTION 

In the following we say that a function w is a weight function on [-1, 1] if 
w E L 2[-1, 1] and w(x) > 0 for x E (-1, 1). In 1894, in one of his letters 

to Hermite, Stieltjes introduced and characterized for the Legendre weight, i.e., 
the constant weight w (x) = 1, a remarkable class of polynomials En+ I(x) := 

En+I (X, w) = Xn+l +f.. satisfying the following orthogonality conditions (with 
respect to a sign-changing function): 

I 

(1 1) f x En+1(x, w)Pn(x w)w(x)dx = 0 for j = 0, ..., n, 

where Pn (x, w) = xn + denotes the monic polynomial of degree n which is 

orthogonal to IPn-I (IEPm denotes as usual the set of real polynomials of degree 
at most m) on [-1, 1] with respect to w. For the Legendre weight, Stieltjes 
made the conjecture that the zeros of En+1 are all in (-1, 1) and interlace 

with the zeros of the Legendre polynomial P . In 1934, G. Szego [18] proved 

Stieltjes' conjecture. In addition he proved that the conjecture holds true for 

the Gegenbauer weight function w(x, A) = (1 - x2)' 1/2, 0 <) < 2. 
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In 1964, Kronrod [8] considered quadrature formulas-now known under the 
name "Gauss-Kronrod quadrature formulas"-with the following properties: 

I n n+1 
(1.2) ff(x)w(x)dx =Er,, nf (xvn)+ EtAt nf (Yun)+Rn(f) 

I V=1 u=I 

where xv n are the Gaussian nodes for the weight function w, i.e., xv n are 
the zeros of Pn(., w), and the nodes y, n and quadrature weights aM no A/1 n 
are chosen so as to maximize the degree of exactness of (1.2); thus Rn (f) = 0 
for all f E P3n+1 at least. It turned out (as it is not hard to see) that the 
exactness condition Rn(f) = 0 for f E P3n+1 is equivalent to the fact that 

En+1 (x, w) := Hlilj (x -y,/ n) satisfies the orthogonality condition ( 1.1). Thus, 
the n + 1 zeros of the Stieltjes polynomial En+I (x, w) are the n + 1 nodes y,t n 
required in the Gauss-Kronrod rule. Of foremost interest are weight functions 
for which the Gauss-Kronrod quadrature formula has the property that 

(i) all n + 1 nodes y, n are in (-1, 1) and are simple (i.e., that all zeros of 
the Stieltjes polynomial En+,(. w) are in (-1, +1) and are simple). 

Also desirable are weight functions which have in addition to (i) the proper- 
ties 

(ii) the nodes y, n and x, n separate each other (i.e., the n + 1 zeros of 

En+I (x, w) separate the n zeros of the orthogonal polynomial Pn (x, w)); and 
(iii) all quadrature weights are positive. 
By a result of Monegato [10], property (ii) is equivalent to the positivity of 

the quadrature weights i#, n , u = 1, ... , n + 1, and thus property (iii) re- 
quires in fact the positivity of the av n's only. As already mentioned for the 

Gegenbauer weight function w(x, A) = (1 - x2)2 1/2, 0 < A < 2, properties 
(i) and (ii) have been shown by Szegd [18], while property (iii) has been estab- 
lished for 0 < A < 1 by Monegato [11]. For further (algebraic) investigations 
on Gauss-Kronrod quadrature with respect to Gegenbauer and Jacobi weight 
functions, see Gautschi and Notaris [2]. Quite recently, it has been shown in- 
dependently by Notaris [13] and by the author [14] that weight functions of the 
form w (x, sm) = (1 - X 2)1/2/Sm (x), where sm is an arbitrary polynomial which 
is positive on [-1, 1], satisfy all three properties stated above for n > m . For 
the special case s2 (x) = (1 + Y)2 - 4yX2, this was first discovered by Gautschi 
and Rivlin [3]. So far, only these two families of weight functions are known 
which satisfy (i)-(iii). In this paper we describe another large class of weight 
functions which have these three properties. More precisely, it will be shown 
that every weight function of the form 

W(x) = 1x2D(ei)I2, x = cos, 0 E [0, ], 

where D(z) is analytic, D(z) $& 0 for Izi < 1, and D is real on R, satisfies 
properties (i)-(iii) for sufficiently large n . As a very special case of this result, 
we obtain the above mentioned fact-recalling that every polynomial sm of 
degree m which is positive on [-1, +1] can be represented uniquely in the 
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form sm(x) = Ihm(ei )I2, x = cosO, 0 E [0, i], where h. is a real polyno- 
mial of degree m which has all its zeros outside of the closed unit disk-that 
w (x, Sm) = V1 - x2/sm(x) satisfies the three properties for n > no. Note 
however, that we do not get the exact lower bound no = m by our general 
approach. Naturally, the question arises whether the assumptions on the func- 
tion D can be weakened to D(z) analytic and D(z) $& 0 for Izi < 1, and 
the existence of the Lebesgue integral of W. That this is not possible without 
imposing additional conditions on D follows from a result of Rabinowitz [17] 
which says that Jacobi weight functions of the form 

(I - x)a(1 + x) 9 = 2 (a+f)1 ) - e')a(1e +e 6il2, 

x = cos6, 0 E (O, r), a = -1/2, and -1/2 < fi < 1/2, resp. =-1/2 and 
1/2 < 11 < 3/2, have at least one Kronrod node outside of the interval [- 1, 1 ], 
when n is even, resp. when n is odd. Other examples are weight functions of 
theform (1-x)a(1+X)fl/Sm, a, f E {-1/2, 1/2} and {a}n{fi}# {1/2}, sm 
a positive polynomial on [-1, 1] of degree m . As has been demonstrated by 
Notaris [13], such weight functions have the property that the smallest or largest 
Kronrod node is +1 or -1, i.e., a boundary point of the support [-1, 1]. 
Apart from this fact they satisfy properties (i)-(iii). 

2. PRELIMINARY RESULTS 

Notation. Let n 
Pn (X := Pn (X,5 W) := kn HI (X- Xv, n ) 

1=1 

denote the orthonormal polynomial of degree n, i.e., 

Pn(XXw)pm(xw)w(x)dx=6n m forn meNO. 

Furthermore, the nth function of second kind with respect to the weight func- 
tion w is denoted and defined by 

I'Pn(x,5 W) 
(2- 1) qn (y) =qn (Y. 5W) := | P' ')W (x) dx 

(] xpn(x, w)w(x)dx yJ(j+) foryeC\[-1, 1], 

where the last expansion is convergent for Iy I 1. 
First we give a simple proof of a slightly extended version of Stieltjes' result 

about the orthogonality of his polynomials (see [12, p. 138]). 

Lemma 1 (Stieltjes). Let w be a weightfunction on [-1, +1], and let En+1(x) 
= Xn+l + be a polynomial of degree n + 1. Then 

(2.2) fx En+1(X)Pn(XXw)w(x)dx=O for j=0. .. , n + m 
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if and only if 

(2.3) kE =qn (Y I w) + 0(y- (2n+3+m) 

for sufficiently large IYI . 

Proof. Necessity. On the one hand, we have by the orthogonality property of 

Pn (,w) that 

En+I (y) E+(X ( w)w(x)dx 

- f xPn (x, w )w (x) dx = dk 

and, on the other hand, setting 

E(1y) En+" E I(y) -n I ~(x) n+,(Y) |- Y-x Pn (x ,w)w (x)dx 

and using the orthogonality property of En+l, we have that 

E ~(y) = qn(y w)-fr y x n Xw)w(x) dx/En~ (y) 

= qn (y, ) n - ) (|I x'En ( (x)p (x, w)w(x) dx) yd-(1+1) 

j=n+m+l1 - 

O(y--(n+l)) 

Sufficiency. Set 
n+1 

knEn+1 (Y) = ,d1 yn+ fY+ i, 
j=0 

where do n+i = kn. Putting x = 1/y, it follows from (2.3), with the help of 
(2.1), that for sufficiently small Ix I 

,jn+1 dj, x x (I| tPn (t , w)w(t) dt) x' + O(Xn+2+m) 

Equating coefficients and setting 
I 1. 

c= tj+n pn (t, w)w (t) dt for j E N0 

and 

djn+l =O forj>n+2, 

we obtain 
K 

E?djn+lcK-j =O forK = 1, 2, ..., n+ 1 +m. 
j=o 
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Moreover, 
n+1 

Ed 1c1. =0 forK = 0, 1, ..., n + m, 
j=o 

which is obviously equivalent to 
I n+1 

| ,dj n+ltnlj tKPn(t5 W)w(t) dt = 0 for K = 0, 1, ... n+m. 
-l j=0 

This proves the sufficiency part. E 

Remark. In view of Lemma 1, the Stieltjes polynomial En+1 (.) = En+I (-, w) is 
given by the (known) relation 

(2.4) knEn+(y W)=q (y ) + O(Y ) ' 

for sufficiently large IyI . 
We recall the following well-known connection between Gauss-Kronrod quad- 

rature formulas and Stieltjes polynomials. 

Lemma 2 (see, e.g., [1]). We have 
1 n 

] s(x)w (x) dx = S(X 

(2.5) v=1 

n+ 1 
+ E A u ns(y u, n)for all 5 E P3n+1 

,u= 1 

if and only if 
n+1 

Il (X -Yu,u n) = En+1 (x, w). 
,t=1 

Furthermore, the Gauss-Kronrod quadrature formula (2.5) is exact for all s E 

'3n+1+mI m E No, if and only if En+1 w) is orthogonal to Pn+m with respect 
to Pn(_ w)w on [-1, 1]. 

The degree of exactness of Gauss-Kronrod quadrature formulas with respect 
to the Gegenbauer weight function is studied in [16]. 

3. ASYMPTOTIC BEHAVIOR OF THE FUNCTIONS OF SECOND KIND 

In order to state our result, we need the following 

Notation. Given a polynomial Pn(z) of degree n, we define the *-transform 
by 

(3.1) ~~~~Pn (Z) := Z Pn(1/f)' 

so that the coefficient of zi in Pn* is the complex conjugate of the coefficient 
of zn-J in Pn(z), j= 0. 1,2,..., n. By 

=n 
On (z) On q$(z f) %Z +K 
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with K n := Kn (f), n = 0, 1, 2, ...., we denote the polynomials which are 
orthogonal on the unit circle I z = 1 with respect to the weight function f E 
L2[-ir, I], f > 0 on [-7n, 7n], i.e., 

2f |k n(ei f)?m(ei6 f)f(O)dO=6n m for m, n = O 1, 2,. 

It is well known that these orthogonal polynomials satisfy a recurrence relation 
of the form 

Kn(f)qOn+l(Z, f) = K n1(fZq$(Z, f +q$+(O, f)q$n(Z, f), 

and the monic orthogonal polynomials 

(Dn (Z) :=)Dn(Z I P ) O/n (Z)lKn K n = O. 1,5 2,5 ....5 

satisfy the recurrence relation 

D fn+1(z f) z(Dn(z f) + )n+i(O f)Dn*(z f). 

The numbers 

(3.2)an an(f) -(Dn+i(O, f) (3.2) 
-O(/n+1(? fIK n+1 V) 5 n =- O.5 1, 2,5 ... 5 

are called reflection coefficients or Schur parameters. It is well known (see [19, 
(11.3.12) and (11.3.13)]) that 

(3.3) lim an (f) = 0 

if logf(6) is Lebesgue-integrable on [-7n, in]. 
In what follows we need the following result of Geronimus ([6, p. 82], resp. 

[5]), which can be considered as a certain generalization of the so-called Szego- 
Bernstein asymptotic formula for orthonormal polynomials on the unit circle: 
Assume that the weight function f has a representation of the form 

(3.4) f(0)=ID(e"j)O2 for E[-aia], 

where D(z) is analytic and D(z) #& 0 for Izi < R, R > 1, and D(0) > 0. 
Then the following asymptotic formula holds (compare also [19, ? 12.1]): 

1 
(3.5) q$ (Z 5 f) = z + (Z) 

nD(z) n 

where 

(3.6) lim En(z) = 0 uniformly for Izi < r < R. 
0oo 

Furthermore, we have the following connection between polynomials or- 
thonormal on [-1, 1 ] and polynomials On orthonormal on the unit circle (see, 
e.g., [19, p. 294]): Let w be a weight function on [-1, 1] and put 

(3.7) f(0) := w(cos0)IsinAI for 0 E[-in, i]. 
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Then the following relations hold for n E N, where x = I (z + z 

Pn(X w) = {Zn q2n(Z, f) + Z 02n , f)} 
+/2r (1 +2 (, f )I/K2n( f) ) 

(3.8) { -n+l q2n 1(z, f) + zn1 2n-1(z Z f)} 

/2ir(1 1- k2n(O, f)/K2n (f)) 

and 

p,(X, (1X-X )W) = 2(1 - 2f(O f)/i2n(f)) 

{ Z- f) -_Zn2n(Z f) } 
(3.9) 2 

r(1 + k2n (O, f)/IK2n(f)) 

| z 02n-+(Z fz )-Z nl2n-I(Z 
I 

f)} 

Finally let, as usual, Tn, resp. Un, denote the Chebyshev polynomial of first, 
resp. second, kind on [-1, 1] of degree n . 

The following theorem plays a crucial role in what follows. 

Theorem 1. Suppose that D satisfies the following conditions: D(z) is analytic 
and D(z) :$ 0 for IzI < R, where R > 1, D takes on real values for real z, 
and D(O) > 0. Furthermore, set 

sin~w(cosO):= ID(e )I for 0 E [O, 7r]. 

Then for each n ENO, qn(21 ( + - 1), (1 -X2)W)/Zn+l has an analytic contin- 

uation to I z < R and 

1 2 
qn(21 (Z + Z-, ( - X )W) 

-= v'7D(z) uniformly on Izi < R. 
n-oo zn+1 

Proof. Put 

(3.10) Pn(X) = Pn(X I (1- x 2)w) 

and 

(3.11) f(f)=w(cos0)Isin0I for0E[-r, ii]. 

With the help of the relation 

z ?? sin kO k 

z2- 2z cos 0 + 1 E sin O Z for lzl < 
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we obtain, withY = I (Z + Z 
2~~~~~~~~~~ 

qn(Y5 (1X 2)W) =f | (x)(1-x )w(x)d 

2f I n (COs 0) sin2Of(6) d 
Joz2-2zcos6+1 

(3.12) 0 rsin kO 2k 

=E(| sin 0 iJ(cos0)sin Of(0)dO z 

= zn' (f sin(n + k + 1 )OPn (cos 0) sin Of(O) dO) zk 

k=O -Jc 

where the last equality follows from the fact that by the orthogonality property 

of Pn i 

1 
2 

Uk- (X)Pn (X) ( 1 - X )w(x)dx=O fork=1, ... , n. 

Next, we show that for n E N0 the radius of convergence of the power series 

(3.13) Qn(z) : (f sin(n + k + 1)03n(cos O)sin Of(O) dO) zk 
k=O 7r 

is greater than, or equal to, p, where p > R is such that D(z) is analytic and 
D(z) $& 0 for Izi < p. Using the fact [cf. (3.9)] that 

eO)2A - e(n+ 1)0 
02n+2(e i)o 

2Anj3 (Cos O) =isin60 

where by (3.2) and (3.3) 

(3.14) 2An = 2i(1+a2n+1) and lim 2An = , 

and noting from (3.5) that 

i(n+ 1)O jO _i(n+ 1__ i(n+1)0 -O 
e- 02n?2(e e + e e62n+2(e-) for 0 e [-7, 7l] 

where 

(3.15) lim E2n+2 (z) = 0 uniformly on I z <p < p, 
n-w00 

we get for the kth coefficient of Qn multiplied by 2An 5 recalling definition 
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(3.1 1), that 
7rr 

2An f sin(n + k + 1)OPn (cos O)sin Of (O) dO 
_r 

= f[ i(n+k+ 1)0 -i(n+k+ 1)0 -ee 

[e-i(n+1)0 2 O(ei_ ei(n+1)0 2n+2(ejO )]f(0) dO 

(3.16) I_ f[ i(n+k+ 1)0e- i(n+k+1)0 ]e- i(n+1)0 fO 
--jte-e ~~~~~~P2f+2(e )f(O) dO 

-7r 

7r 
-ikO 7r~ -ikO -jO f-ieikOD(eO) dO + e e2n+2(e )f(O) dO 

_7r -X 

_| ei(2n+2+k) E2n+2(e )f(O) dO, 
-7r 

where the last equality follows from the fact that by the analyticity of D, 

f ei(2n+2+k)OD(eio) dO = 0 for n, k e N. 
-7r 

Now we show that for p E (O, p) and k E N0, 

J| e ie2n+2(e jO )f(O) dO 

(3.17) - |ir ei(2n+2+k)O (e f( dO9 CM2+2 

where M2n+2(P) = max IZI< Ic2n+2(z)l and c is a constant not depending on n 
and k. Indeed, since D is analytic and thus, by (3.5), en n E N0, is analytic 
on lzl < p, we have by Cauchy's inequality, setting 

00 00 

D(z) = Zd-z and (z) = E 6jnZ 
j=0 j=0 

that for p E (O, p] 

(3.18) 1d1l < max ID(z)l/gp and 6j, nI < Mn(p)/gp 

Letting 
00 

IDe )I2 = E bj cosj6, 
1=0 

the first relation of (3.18) implies that for p E (0, p] 

(3.19) lbj <1c1/pj for jeNo. 

Similarly, letting B(z) = E'j bjzJ (note that by (3.1 9) B is analytic on Iz < 
p for 0 < p < p), and using the fact that 

f+7r e ikID(e )I e282n(e i )dO= I e- ikB(eo)e22 -i()dO 
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we obtain with the help of (3.19) and the second relation of (3.18) that for 
P E (0, PI 

7r-ikO jO 2M2n+2(,P)fokeN (3.20) || e ck2n+2(e )f(O)dO < 2 k forkENO Jr -P2+2 

where c2 E + . Since the second integral in (3.17) can be split into 

| f ei(2n+2+k)O B (e i)2+2(eiO) dO 

1 2e eB(e2n+2B(e d)c2+2(e ) dO, 

it follows as above that the absolute value of the first integral is smaller than 

C3M2n+2(P)1P 2n+2+k for P E (0, p1 and finally by the analyticity of Bc2n+2 on 
zI < ?, p < p, that the absolute value of the second integral is smaller than 

C4M2n+2(P)1P 2n+2+k for P E (0, p). Thus, relation (3.17) is proved. This, in 
conjunction with (3.16) and the fact that D is analytic on JzJ < p, implies 
that the radius of convergence of Qn is greater than R, which proves the first 
statement of the theorem. 

Concerning the uniform convergence, we use 

D(z) = A (I [ | eikfD(e'i) d ) Zk 

together with (3.13), (3.16), and (3.17) to show that R < P < p and 

(3.21) |7An Qn (z) -D( z)| < cM2n+2 ( P) E Dz M 

In view of (3.15) and the second relation of (3.14), this yields the assertion. n 

Remark. Geronimus pointed out in [7, p. 102] that, under the assumption that 
the weight function satisfies Szeg6's condition, one gets with the help of the 
relation 

lm pn(x, w)qn(x, w) - forx 5 [-1,1 

and the asymptotic formula of Szego-Bernstein for pn(x, w) that, with x = 

1(z + z-) 

(3.22) q 
n(x, w) I for 

_zJ 
< 1 - e, e > 0. 

But note that relation (3.22) gives an asymptotic representation in the interior 
of the unit circle only, while for our purpose we need an asymptotic represen- 
tation which is valid also outside the unit circle. Unfortunately, it seems to be 
impossible to get Theorem 1 in a similar way as relation (3.22). 
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4. ZEROS OF STIELTJES POLYNOMIALS 

In this section we prove the main result of this paper, namely that under 
suitable conditions on the weight function the Stieltjes polynomial En(., w) 
has n simple zeros in (-1, 1) . 

Lemma 3. Let En+1 (x) = Xn+1 + and Gn+i (Z) = Zn+l +*** be real polyno- 
mials of degree n + 1 such that 

(4.1) E n+l(x) = 2- n Re{Gn+(e )} where x=cos0, 0 E [O, r]. 

Then 

x xE +i(x)Pn(x w)w(x) dx = O for j = O, 1,..., n + m 

if and only if 

n+1 n+1 

(4.2) nZ Gfl+ z)+ G*+iz=2 q+( ? )0 ( ) 
(4.2)~ ~ ~ ~~l k n qn(21(Z+Z ,),W) 

for sufficiently small IzI, z E C. 

Proof. Let 
n+1 

Gn+1 (z) = d j 

j=O 

Then we get from (4.1) that 

n+1 

2n En+ (y) = Z d Tn1(). 
j=O 

Setting z = y - 2 1 for y E C\[- 1, 1], i.e., y= (z + z-) with IzI < 1, 
and recalling 

(y + y2 _1)n + (y _ _ 2 )n 

Tn (y) =2 

we obtain that 
(2 Z)n+l -En+ I(y) = Zn+ 1 Gn+1 (z) + G*~ z 

and thus, by Lemma 1, 

1 _ kn qn(2(Z+Z1), W) n+2+m 

(2z)n+l En+I (y) 2n+1 zn+( 

which gives the assertion. o 
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The main result is now the following 

Theorem 2. Suppose that D(z) is analytic and D(z) 5 0 for Izi < 1, and that 
D takes on real values for real z . Furthermore, set 

w (cos 0) sin 0 := ID(e i) 12for 0 E (O, 7r). 

Then there exists an no E N such that for each n > no the Stieltjes polynomial 

En(.,(-x 2)w) has n simple zeros in (-1,1). 

Proof. Let us assume, without loss of generality, that D(O) > 0, and put 
2n+1 zn+1 

2k qn( l (Z + Zl 

Since Gn+1 (0) = 1, we get from relation (4.2) and Theorem 1 that 

2n+1 1 
lim 1 =1. 

k V27tD(O) 
By Theorem 1 this yields 

D___ 1 
(4.3) lim Qn (z) = D() uniformly on Izi < 1. n-~oo D (z) D D(z) 

We thus obtain from (4.2) and (4.3) by standard arguments of uniform conver- 
gence, using also the fact that, by (4.2), G* 1(z) + G ~1(O)zn+l is the (n + 1)st 
partial sum of Qn(z), that for given tu > 0 there is an n1 E N such that for 
n > n1 and Izi < 1 

(4.4) IGn+1(z) + Gn+1(0)z ~1-1/D(z)I <,el. 
Applying Cauchy's integral formula on lzj = 1 to the (n + 1)st derivative of 
the analytic functions Qn and 1 /D at the point zero, we get with the help of 
(4.3) that for any 62 > 0 there is an n2 such that n > n2 implies 

(4.5) 12Gn+I (0) - dn+ |i < 62 

where dn+= (1/D)() ()/(n + 1) !. Now, since 1 ID is analytic on I z < 1 
we have limnoo dn+1 = 0 and thus by (4.5) that 

lim Gn+I(0) 
= 0. 

Hence, in view of (4.4), we find that for given e > 0 there exists an no such 
that for n > no and IzI < 1 

(4.6) IG*+ (z)-1/D(z)I < . 

Recalling D(z) 5$ 0 for I zi< 1, (4.6) immediately implies that Gn*+(z) for 
large n has no zero in IzI < 1, which is equivalent to the fact that Gn+1 has 
all zeros in Izi < 1. Hence (see, e.g., [15, Lemma 2]), En+, (x, (1 - x2)w) = 

2-n Re{Gn+1(e'0)}, x = cosO, has n+1 simple zeros in (-1, 1), which proves 
the theorem. n 
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In view of Szegd's results [18] mentioned in the introduction, it is likely that 
Theorem 2 holds true for weight functions of the type 

w(X) = (1 - x2)A-3/2 ID(eio ) 12 < A 

x = cos 0, 0 E (O, 7r), where D satisfies the assumptions of Theorem 2. 
The following asymptotic representation of the Stieltjes polynomial is impor- 

tant in what follows. 

Corollary 1. Let k1<' be the leading coefficient of Pn+1 (x, w) and suppose that 
the assumptions of Theorem 2 are fulfilled. Then the Stieltjes polynomial has 
the following asymptotic representation on [-1 1 ]: 

knlnlx,(- )W) = Pn+ (X, W) + 6n+1 (X) oxE[11] 

where limn oo6n(x)= 0 uniformlyon [-1, 1]. 
Proof. In view of relation (4.6) we have 

(4.7) G~~~~n+1 (e D)e= be + qn+l (ei0 

where lim~0n0 qn+l (e'0) = 0 uniformly on [-7ri ] and D is defined as in 
(4.3). This implies 

?ln+1 )') (4.7 ) Gn+1 (e i) =/l+ t~n+ I(ei 

where limnoo qn+l (e'0) = 0 uniformly on [-7t, 7]. Recalling that by (3.5) 
and (3.6) 

(4.8) I~21(e'~io iG 2 e i(2n+ ')fl i 

where limn-oo 02n+l(ei) = uniformly on [-7t, i], we get with the help of 
(3.8) that 

2n+1 E n+l(x, (1 -x 2)w) = 2 Re{Gn+ I(e i)} 

ei(n+ 1)O' 
= 2Re j D ) + n+yI((cos 0) 

= 2Re{e in0 D2n+1 (eio , ID(e O)I2)} + 3n+ (cos 0) 

=2+ Pn+ 1 (x, w) + 3n+ 1 (cos 0), 

where limnooyn+1(cos0) = 0 and limn tn+l (cos 0) = 0 uniformly on 

[O, 7r]. Using the fact that by [19, Theorem 2.7.1], k'1 = 0(2 n+1), since 
0 2~~~~~~~~~~~~~~+ 

ID(e') 12 is in the Szego class, the corollary follows. o 

If the weight function w is of the form w(x) = 1/(1 - X2)1/2 sm (X), where 
Sm is a positive polynomial on [-1, 1] of degree m, we even have equality in 
Corollary 1 for n > m (see [13 or 14]). 
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The second main result of this paper is the following 

Theorem 3. Suppose that the assumptions of Theorem 2 are fulfilled. Then there 
exists an no e N such that the following propositions hold for each n > no: 

(a) The zeros of En+l(, (1 - x 2)w) and Pn(*, (1 - X2 )w) separate each 
other. 

(b) All quadrature weights av n v=1,. . .,n, and AA n v y = 1 n + 

1, of the Gauss-Kronrod quadrature formula (1.2) are positive. 

Proof. (a) Using (4.7) and (4.8) together with the fact that 1/ID(e'o )I is bound- 
ed on [-7t, it], we obtain (note that the first equality follows by simple calcu- 
lation) 

RefGn+1 (e i)} Refe(+ 
IV 

2n+2(e )} 

+ Im{Gn+1 (e )} Im{e e(n+1)042n+2 (e"i)} 

(4.9) =Ret Gn+ I(e io)e i(n+ 1)0 (2n+2 (e- io 

OW + 5n+l(e )>O forn>no 

where limn-oo5n+1(e 0) = 0 uniformly on [-7t, 7t]. Observing that by [15, 
Lemma 2] the zeros of Re{Gn+ I(ei0)} and Im{Gn+l(e 0 )}/ sin6 separate each 
other, since Gn+1 has all zeros in the open unit disk IzI < 1, we get, using 
relation (4.9) at the zeros of Re{Gn+ I(e o)}, that the zeros of Re{Gn+ I(eio)} 
and Imfe i(n+1)0 )2n+2(e i)I/ sin 0 separate each other. In view of (3.9), this 
proves part (a). 

(b) By [10, Theorem 1], (a) is equivalent to the positivity of the A 's ns. Thus, 
it remains to show that (compare [10, Theorem 2 and 4, (6.4)]) 

7V,fl 'Cv,f + k2E) ( saw, n= 
Cryn +kEn+ I (xl, n) Pn' (X> , n ) 

-1 f~~~En+ I(Xv, n) _1 

k2E P, (xv, n) (En+(Xv, n) 
> 

for v = 1,..., n, where cv n denotes the weights of the n-point Gauss quadra- 

ture formula relative to the weight function (1 -x2)w, P,(.) P,(. w), resp. 

P,(.) P* (.,5 (1 - x )w), is the monic orthogonal polynomial with respect to 
w, resp. (1-x2)w, k =f1P2(1 - x2)w dx, and x isthe vth zero of 

P, . Because of part (a), the positivity of v, n is equivalent to the inequality 

(4.10) > 1. 
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In order to prove relation (4.10) for large n, we first observe that the follow- 
ing relation holds for n E N: 

(4.11) P-1x~ _ 2 
(4.11) n+I (v, n ) 2nt+ 1 

where a2n+l is the (2n+ 1)st reflection coefficient relative to the weight function 

ID(e" )I . In fact, from the representation 

(4.12) 2 Pn(x)= 2isi 1(Z)) 

it follows that at the zeros xv n = cos Ov n the relation 

(4.13) Z ( Z( (4.13) Z>~~,n ?2n+1( v,n)=(D2n+1(>, n) 

holds, where z e = ,i0 n v = 1, ..., n. Applying the recurrence formula 
(3.1), resp. the equivalent recurrence formula 

(3.1') ? zn+ (z) = (z) a 

to 2+ resp. 2n+3, and then to resp. n+2 we obtain with the 
help of (4.13) that 

Z , (Dn+ ( -( (Z = a1 
2 

1)1)(z ( >, n 2+ (v, n ) ?2n+3 (Z, n ) =( -2n+ 1) (Zv n- ))2n+ 1 (vZn) 

and thus by (4.12) 

(4.14) 2n+y = ( 1 - a 1 ) n+ 1) 
1 n 

This, in conjunction with the relation 

2 vn+ x, n ) =Zv n ( ?2n +1 +?2n+l1) ( zvn )1/2 

=Z^^ (n+ 1?2 1 D* n 

proves relation (4.1 1). 
Now taking into account the fact that by (3.6) 

lim VI*(eD )I = uniformly on [-7r, ij], 
ID(e'I 

it follows that IDI* (ei0)o is bounded from below for sufficiently large n, which 
implies by (4.14) that also 12n+lp+ (xv ,n)l is bounded from below for suf- 
ficiently large n. Since by Corollary 1, 2nEn+I(x) = 2Pnn+l(x) +n+I(X), 
x E [-1, 1], it follows from (4.11) together with (3.3) that relation (4.10) 
holds for n > no. This proves the theorem. o 
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